P_n and As_n Ligands: A Novel Chapter in the Chemistry of Phosphorus and Arsenic

OTTO J. SCHERER

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany

Received July 9, 1998

Introduction

Even today, the most prominent phosphorus- and arseniccontaining complex ligands are of the $2e^-$, $4e^-$, and $6e^$ types R₃E, R₂E(CH₂)_{*n*}ER₂, and RC[(CH₂)_{*n*}ER₂]₃ (E = P, As). In 1969 and later, the groups of Dahl,¹ Ginsberg,² and Sacconi³ reported on their pioneering work in the novel field of coordinatively stabilized, substituent-free ("naked") P_{*n*} and As_{*n*} ligands. These developments have been reviewed.⁴

Stimulated by these results, we examined the influence of substituted cyclopentadiene (Cp^R) ligands on the metal fragment with regard to the formation of acyclic and cyclic E_n (E = P, As) building blocks. The successful coordinative stabilization of cyclo- E_4 , cyclo- E_5^- , and cyclo- E_6 ligands— the all-phosphorus and all-arsenic analogues of cyclo-butadiene C₄H₄, the cyclopentadienide ion C₅H₅⁻, and benzene C₆H₆—as sandwich and triple-layer sandwich complexes represent a further impressive example of the diagonal relationship between carbon and phosphorus.^{4,5}

С	Ν
Si	Ρ

Furthermore, many of these compounds also are in accord with the concept of isolobal (HC $\leftrightarrow P(As) \leftrightarrow NiCp^{R}$) and isoelectronic fragments⁶ as well as often fulfilling the electron-counting rules of Wade–Mingos.⁷ Much new information about the remarkable parallels to polyphosphides (solid-state chemistry),⁸ monocyclic and polycyclic phosphanes,⁹ and the rich diversity of their reactivities has been obtained in the past decade. Typical examples are the oxidations to PX (X = O, S, Se, Te) ligands, ring cleavage and expansion reactions of E_n , and the activation of P₄ and P₂ at room temperature.

10.1021/ar970317c CCC: \$18.00 © 1999 American Chemical Society Published on Web 07/17/1999

It is also worthy of note that complexes with P_n and As_n ligands are often thermally very stable, and some can even be handled in the air for short times.

The rapid developments in this field of phosphorus and arsenic chemistry were also influenced by the pioneering work of Huttner's group on phosphinidine, arsinidine, and starlike complexes [{ L_nM }₃(E=E)], where E = As, Sb, Bi.¹⁰

E₁ **Ligands (E = P, As).** Sources for the pnictogen E_n ligands are, in particular, P_4 and As_4 as well as EX₃, $E(SiMe_3)_3$, $cyclo-(AsR)_n$, and $E_7(SiMe_3)_3$ or M_3E_7 (M = Li, Na, K, Rb; E = P, As). The L_nM fragments originate from mono- or dinuclear transition metal complexes with L_n = CO and/or (mostly substituted) Cp^R.⁴ The relevant coordination modes are shown schematically in Scheme 1.

The classical trivalent coordination of the phosphorus and arsenic atoms is achieved in structures A to A'''.

The complex $[Cp_2^ZrPZrCp_2^*]$ (2), formed by the reaction of $[Cp_2^ZrCl_2]$ with KH and PH_2R (R = 2,4,6-'Bu₃C₆H₂),¹² shows a striking parallel to the allene-like skeleton structure of $[Cp^R(OC)_2Mn=E=Mn(CO)_2Cp^R]^+$ (1; E = P, As; $Cp^R = Cp^*$).¹¹ The X-ray crystallographic data for **2** are in harmony with the multiple bond character for the Zr–P bonds (2.54 Å); the Zr–P–Zr bond angle differs only slightly from linearity (167°). Similarly, a bond order of 2 has been proposed for the complex **3** (eq 1).¹³

$$M_{0}(NRR')_{3} + P \equiv M_{0}(NRR')_{3}$$

+ 30°C || - 35°C R = 'Bu, R' = Ph (1)
(R'RN)_{3}M_{0} = P = M_{0}(NRR')_{3}
3

The long-sought and sometimes postulated complexes of the type **C** (Scheme 1), with a formal metal pnictogen triple bond, have now been verified in compounds **4** and **5** as shown in eqs 2 and $3.^{14}$

The force constants for the triple bonds in **4a,b** parallel those for the bonds in HC= \equiv E (E = N, P).¹⁴ Moreover, unusual ³¹P chemical shielding tensors have been found for **4a** and **5** in comparison with the isoelectronic molecules R-C=P and [R-N=P]⁺.¹⁴

Otto J. Scherer was born in Amberg (Bavaria) in 1933, and studied chemistry at the Universities of Aachen (TU) and Munich (LMU, Dr. rer nat. 1962, supervisor Prof. Max Schmidt). He finished his Habilitation for Inorganic Chemistry in 1967 at the University of Würzburg. In 1970 he was appointed full Professor at the new University in Kaiserslautern. He received the Alfred-Stock-Gedächtnispreis of the German Chemical Society in 1994. His research interests are main-group chemistry as well as its combination with coordination chemistry.

Complex **4a** reacts with $[M(CO)_5(thf)]$ (M = Cr, W) to furnish (RNCH₂CH₂)₃NW=P: \rightarrow M(CO)₅ (**6**), while the analogous complexes ('BuO)₃W=P: \rightarrow M(CO)₅ (**7**) have been characterized spectroscopically from the reaction of $[M(CO)_5(thf)]$ (M = Cr, W) with 'BuC=P and $[W_2(O'Bu)_6]$.¹⁴

Compounds with a trigonal planar μ_3 - E_1 atom (phosphinidine type) are known in addition to the complexes **A** to **A**^{'''} (Scheme 1), with pyramidal E_1 atoms.^{4,10} The five valence electrons of the E_1 atom are frequently involved in bonding to three L_n M fragments.

The paramagnetic complex [{Cp₂Zr}₂(μ -Cl)(μ ₃-P){ZrCp₂-Cl}] (**8**), containing one Zr(III) and two Zr(IV) centers, was recently prepared from H₂PR and Cp₂ZrCl₂; the three Zr atoms and the P atom are coplanar, with one short (2.51 Å) and two longer (2.59/2.60 Å) bonds.¹⁵

Not shown in Scheme 1 are the structurally highly diverse clusters containing semi-interstitial P and interstitial E atoms (E = P, As, Sb) incorporated in open or closed polyhedra as $\mu_{5.6.8.9.10.12}$ -E₁ atoms.⁴

PX Ligands (X = **O, S, Se, Te).** The PO radical, the phosphorus analogue of the ubiquitous NO molecule and the most abundant phosphorus-containing species in interstellar clouds,¹⁶ was coordinatively stabilized in complex **10** (eq 4) in 1991.^{17a,18a}

Since then, the intriguing series of PO complexes **11**–**13**¹⁴ (Scheme 2) has been prepared. The method of choice for the conversion of P to PO is air oxidation.^{18a} An additional method is hydrolytic cleavage of the P–N bond in [{ L_3M }₄(μ_3 -PNR₂)] (**14**), the phosphinidine complex precursor of **11**.^{17b}

The as yet only known example of a complex with a terminal PO ligand, **13**, was prepared by oxidation of $L_3Mo\equiv P$ with dimethyldioxirane.^{14a} In complexes of these types, the IR $\tilde{\nu}(PO)$ band is observed between 1050 and 1265 cm⁻¹, while the PO bond lengths range from 1.46 to 1.51 Å. Reactivity studies have shown that the P atom of the PO ligand is susceptible to nucleophilic attack.^{14a}

Apart from the μ_3 -PS derivatives of complex **10**^{18a} and [{CpFe(CO)₂}₃(μ_3 -PS)] (**15**),^{18b} the sulfur analogue **13**' of **13** is, again, the only example of a complex with a terminal PS ligand.^{14a} Crystallographic data for these complexes emphasize the importance of the following resonance structures: X-P=Mo(NRR')₃ \leftrightarrow X=P=Mo(NRR')₃ (**13**, X = O; **13**', X = S).^{14a} Complexes of these types are usually prepared by oxidation of the corresponding P₁ derivative with elemental sulfur, S₈.^{14,18}

Compound **16** is an ideal starting material for the preparation of complexes containing one or two μ_3 -PX (X = O, S, Se, Te) ligands (eq 5). The following trends in these

reactions are worthy of note. On reaction with O_2 or S_8 , **16**^{19a} furnishes exclusively the dioxidation products **18a,b**,^{19c} whereas reaction with gray selenium affords both **17a**^{19b} and **18c**.^{19a} On reaction with tellurium, only one phosphorus atom of **16** is oxidized to yield **17b**.^{19c}

The photochemical and thermal rearrangements of a μ_3 -PS ligand to a side-on coordination mode are illustrated in eqs 6 and 7. Complex **21** represents the first example of a compound in which two chiral tetrahedranes, each

containing two main group atoms and two transition metal fragments, are joined by a common transition metal atom (W) vertex. 18a

The P=S bond lengths of the μ_3 -PS ligands are in the range of 1.95–2.01 Å^{18a,b} in **20** and, as expected, are

lengthened in **21** (2.09 Å, P–S single bond).^{18a} The previously missing links in the PX ligand series, namely PSe and PTe, have been coordinatively stabilized in compounds **17a,b** and **18c** and partially characterized by X-ray crystallography [**17a**, d(P–Se) = 2.09 Å].^{19b}

E₂ Ligands (**E** = **P**, **As**). A striking feature of molecules with this type of ligand is the dominating role of the E_2M_2 tetrahedrane skeleton (**D**; **E** = **P**, As, Sb; $L_nM = 15$ valence electron (VE) fragment; Scheme 3).⁴ Molecules with the E_2M_2 butterfly skeleton (**E**; Scheme 3) almost exclusively contain 14 VE fragments [e.g., Ni(Pd)L₂; **L** = PR₃] at the wing tips, the only exception being [{Cp*(OC)₂Mn}₂(μ - η ²: η ²-As₂)] (**22**), with 16 VE ML_n fragments.²⁰

A remarkable mild activation of P_4 at room temperature has been realized according to eq 8.²¹ In the diphosphini-

dine complex **24**, the unusual mesomeric $\underline{\overline{P}} - \underline{\overline{P}}$ structure of the P₂ molecule is stabilized as a formal 8 σ electron donor ligand. On going from **23** to **24**, d(P-P) increases from 2.04 to 2.23 Å.²¹ The Re₂P planes in **24** are nearly

orthogonal (91.1°), cf. [{Cp(OC)₂Mn}₄As₂] (**25**).^{20b} To date, [{Cp*(OC)₂Mo}₂(μ - η ²: η ²-Sb₂)] (**26**) is the only example of a compound with an Sb₂Mo₂ tetrahedrane structure. It is prepared by cothermolysis of [{Cp-(OC)₃Mo}₂] with metallic antimony^{22a} or with (^{*t*}BuSb)₄ as source of Sb₂.^{22b} The Sb–Sb bond distance is in the range typical for double bonds.^{22a}

Reactivity of P₂ Ligands. Promising perspectives with regard to activation of P₂ ligands were recently discovered (eqs 9 and 10). The P–P bond of the starting material **27** is cleaved during the two-step reaction leading to 28^{23a} (eq 9). Metalation of **28** with 'BuLi followed by reaction

with ECl₃ (E = As, Sb) affords [{Cp(OC)₂Mo}₂(μ - η ²: η ²-PE)], the first compounds containing PAs or PSb coordinatively stabilized in clusters having an Mo₂PE tetrahedrane skeleton.^{23b} An extremely mild cleavage of the P₂ ligand possessing a formal P=P double bond (2.04 Å) is observed in the reaction of the butterfly-shaped **23** with excess [W(CO)₅(thf)] at room temperature. The phosphinidine complex **30**, with two planar 5e⁻ donor P₁ ligands, is formed in addition to the chiral tetrahedrane **29** (eq 10).²¹

(E₂)_{*n*} Ligands (E = P, As; *n* = 2, 3, 4). Some remarkable cluster and cagelike molecules with (E₂)_{*n*} ligands have been prepared in the past few years. In addition to species of the [{L_nM}₂(μ - η ²: η ²: E_2)₂] type,⁴ the clusters **31** (eq 11), with triangulated dodecahedral Fe₄E₄ cores, have been obtained.²⁴ Interestingly, all the phosphorus atoms of

cluster **31** can be oxidized by S₈ or by gray selenium to afford the previously unknown XPPX ligands (X = S, Se).²⁴ On going from **31** (E = P) to [{CpFe}₄(P₂S₂)₂], the mean phosphorus–phosphorus bond length increases from 2.31 to 2.37 Å.²⁴

Complexes with a Co_3E_6 skeleton are accessible as shown in eq 12. Although the E–E bond lengths in the Co_2E_2 butterfly subunits of **32a,b** are in the typical ranges for double bonds (P=P = 2.05 Å,^{26a} As=As = 2.29 Å²⁵), the other two E_2 ligands exhibit E–E and E···E bond lengths of 2.17/2.52 and 2.55 Å for E = P and 2.40/2.41/2.73 and 2.78 Å, respectively, for E = As. The reaction according to eq 12a also furnishes **33**, which can formally be regarded as an open-edged Dewar hexaarsabenzene (As···As = 3.55

Å, As–As = 2.32-2.58 Å), capped by two Cp*Co fragments.²⁵

The reactions of $E_7(SiMe_3)_3$ with FeCl₂ and LiCp^{*} afford [{Cp*Fe}₃E₆]⁺ (**32c**, E = P, Fe in place of Co;^{26a} **32d**, E = As, Fe in place of Co^{26c}) with four fewer electrons and an E₆ prismane unit in which one E–E bond has been cleaved (P–P = 2.27–2.39 Å;^{26a} As–As = 2.51– 2.71 Å^{26c}). The corresponding Co₃As₆ framework of [{Cp*Co}₃As₆]²⁺ consists of two cyclo-As₃ units [\overline{d} (As–As) = 2.56 Å], forming an elongated As₆ prismane (As···As = 2.85 Å).²⁷

Compounds of the type **32** have been examined by means of density functional calculations. ²⁷ The complexes **32a** and **33** serve as versatile starting materials for cluster expansion reactions.²⁸ The skeleton of $[Pd_9As_8L_8]$ (L = PPh₃), prepared by the reaction of $[PdCl_2L_2]$ with As(SiMe₃)₃, is made up of a Pd-centered Pd₈ cube, capped by four As₂ units.^{26d}

E₃ **Ligands (E = P, As, Sb).** In addition to the most important coordination modes⁴ **F** and **G** (Scheme 4), other novel developments are the synthesis of $[Cp^*(OC)_2Mo-(\eta^3-Sb_3)]$, containing a cyclo-Sb₃ ligand^{22b} (cf. complex **26**), and reactivity studies on $[(triphos)CoP_3]$.²⁹ Its cyclo-P₃ ligand remains intact on protonation^{29a} with CF₃SO₃H and on reaction with RHg⁺.^{29b}

Further illustrative examples of the often unpredictable E_n and/or cluster-type complexes are the tetranuclear species **34** and **35**, with nine and six pnictogen atoms, respectively (eqs 13 and 14). A striking feature of **34** is the three different sets of E-E bond lengths: the ME₃ tetra-hedrane subunit has P-P bond lengths of 2.11-2.12 Å,^{26a} (As-As = 2.31-2.33 Å);^{26b} longer distances are seen for the cyclo-E₃ parts of the ME₆ nortricyclane skeletons, while the E···E separations are even larger [2.33/2.42 Å for $\overline{d}(P-P)/(P\cdots P)$ in **34a**; 2.57/2.73 Å for $\overline{d}(As-As)/(As\cdots As)$ in **34b**]. The M₄P₆ skeleton of **35** consists of a distorted M₄P₄ cubane with one pair of opposing faces, each capped

by one P atom from one of the two acyclic P_3 ligands (average P–P bond lengths, 2.18 Å in **35a**,^{30a} 2.25 Å in **35b**^{30b}).

The complex type **36** is formed by an unexpected and irreversible ring closure reaction (eq 15).³¹

 E_4 Ligands (E = P, As). The most important coordination modes⁴ are illustrated in Scheme 5. To date, no further examples of types H and I with terminal³ or side-

on² coordination of the P₄ tetrahedron have been reported. Photochemical^{32a} or thermal reaction^{32b} of P₄ with $[W(CO)_5L]$ furnishes $[\{(OC)_4W\}\{PW(CO)_5\}_4]$ (structure **J**, Scheme 5), in which cyclo-P₄ exists as a 12e⁻ donor ligand.

The P₄ ligand in complex **37** (eq 16), which has also been examined with the help of EHT calculations, experiences a severe, kitelike distortion to afford a P₁ and a P₃ unit (P···P = 2.50 Å).³³

The 30 VE triple-decker cation **38** (closo type, n + 1 = 7 SEPs; eq 17) has a cyclo-As₄ unit as the middle layer and was further characterized by density functional calculations;²⁷ the As–As bond lengths are in the range 2.455–2.47 Å.

Mechanistic Aspects. Mechanistic features of the reactions of E₄ tetrahedra with $Cp^{R}M(CO)_{n}$ fragments are summarized in Scheme 6A,B. Photolysis of [{Cp"Fe- $(CO)_{2}_{2}$ with P₄ leads to the series of complexes **39**-**43**, possessing cyclic and acyclic P₄ ligands,^{34a} by successive loss of CO ligands and cleavage of one to three P-P bonds in the P₄ subunit (Scheme 6A). Brief thermolysis of $[{Cp'''Fe(CO)_2}_2]$ (Cp''' = 1,2,4-*t*Bu₃C₅H₂) with P₄ proceeds with exclusive cleavage of one P-P bond to furnish exo, exo-[{ $Cp'''Fe(OC)_2FeP$ }_2P_2] (cf. 39) in 75% yield, the butterfly structure of which has been confirmed by crystallography.34b Reaction of this product with diphenylacetylene leads to the sandwich complex [Cp"'Fe- $(\eta^5-P_3C_2Ph_2)$]. This is the first example in which the triphosphacyclopentadienide unit $cyclo-(P_3C_2Ph_2)^-$ has been formed directly from P₄ and an alkyne.^{34c}

The CO elimination and As–As bond cleavage sequences a–e in Scheme 6B for the cothermolysis reaction of As₄ with [{Cp*Co(μ -CO)}₂] were deduced from ¹H NMR studies in comparison with known and structurally characterized cobalt complexes containing As₄ and (As₂)₂ ligands.³⁵

Convincing evidence for the mechanism (Scheme 6C) postulated for the hydrogenation of P_4 with [(triphos)MH₃] (M = Rh, Ir) to give coordinated cyclo- P_3 and PH₃ has been presented.³⁶

E₅ **Ligands (E** = **P**, **As).** On account of their surprising and manifold reactivities (Scheme 7), the most important members of this group are the sandwich complexes $[Cp*Fe(\eta^5-E_5)]$ (**44**), conveniently prepared by thermolysis of $[\{Cp*Fe(CO)_2\}_2]$ with E₄ (E = P, As).⁴

The E_5 unit remains intact in many reactions, e.g., in the cationic, 30 VE triple-decker complex **45**, reaction $a^{.37a}$ The corresponding Ru and Os analogues are obtained by transfer of the cyclo- E_5 unit, reaction $b^{.37b}$ The previously unknown η : $^5\eta^2$ -cyclo- E_5 coordination mode is present in the complexes **47**, reaction c, in which the E–E bonds bearing the additional η^2 -coordination are elongated to 2.36 Å for E = P and 2.50 Å for E = As.^{37c}

Although the P₅ ring in complex **48**, reaction d, has an envelope conformation,^{37d} cisoid E₅ chain ligands are observed in complexes **51**, reaction e.^{30b,37d} The system **49/50**, reaction e, involves an unusual equilibrium between two distorted cubanes with FeTa₂P₅ skeletons: the

Scheme 6

structure of **49** comprises an FeP_5 six-membered ring in the chair conformation, capped by two Cp''Ta fragments,

while the P_5 ligand in **50** is split into a P_1 unit and a trigonal pyramidal P_4 unit.^{30b}

A broad palette of Cp^RCo complexes containing "naked" P_n ligands is obtained from the reactions of **44a** with $[Cp^{R}Co(CO)_2]$ species (eq 18).^{19a}

The "triple-decker" complex **52** (eq 18), with a planar CoP₄ five-membered ring as the middle layer, is worthy of special mention. Replacement of the mononuclear starting material $[Cp^{R}Co(CO)_{2}]$ in this reaction by the dinuclear species $[\{Cp^{R}Co(\mu-CO)_{2}\}_{2}]$ in eq 19 provides access to complex **55**.^{19a}

The X-ray crystallographic data for **55** reveal that two of the P–P bonds (each 2.35 Å, compared with an average of 2.13 Å for the other three bonds) are also involved in side-on $(\eta^2:\eta^2)$ coordination to the Co₂Cp^R₂(μ -CO) fragment.^{19a}

A novel synthetic approach to P_5 sandwich complexes has been verified for $[Cp''Fe(\eta^5-P_5)]$ (**44c**) by the reaction of K[Fe(CO)₂Cp''] (Cp'' = 1,3-^{*t*}Bu₂C₅H₃) with $[(OC)_5Cr-(PCl_3)]$.³¹ The cyclo-P₅ sandwich complexes of the type **44**

44a

mentioned above show ³¹P NMR chemical shifts in the range 153–167 ppm.

It is interesting to note that gray arsenic was used as staring material for the triple-decker sandwich [{CpCr}₂- $(\mu-\eta:^5\eta^5-As_5)$].³⁸ Magnetic susceptibility studies on the related P₅ species [{Cp*Cr}₂($\mu-\eta:^5\eta^5-P_5$)]⁺ revealed spin crossovers at 33 and 23 K.³⁹

E₆ Ligands (**E** = **P**, **As**). Of the all-pnictogen analogues of the (CH)₆ valence isomers (Scheme 8), cyclo-E₆ (**L**) has been coordinatively stabilized as the middle layer of 28 VE triple-decker complexes.⁴ The 26 VE triple-decker complex [{Cp''Nb}₂(μ - η :⁶ η ⁶-P₆)] experiences severe bisallylic distortions which have been explained by means of extended Hückel calculations.⁴⁰ The formal E₆ prismane

 $\mathbf{E} = \mathbf{CH}, \mathbf{P}, \mathbf{As}$

structure (**M**) is present as a subunit in nine-atom clusters of the $[{Cp*M}_{3}E_{6}]^{n+}$ type (see above).

The open-edge E_6 benzfulvalene structure (**N**, Scheme 8) has been stabilized in the complexes **56** (eq 20). ⁴¹

Although the E_6 bicyclopropenyl analogue **P** is still unknown, a part of this structure has been observed in the P_8 ligand of [{Cp''Co}_3(P_3-P_5)] (**62**, see below).⁴² The complex **57**, prepared from [Cp*₂Ti(CO)₂] and P_4 ,⁴ contains

a cyclo-P₆ ligand in the chair conformation—which can formally be regarded as $[cyclo-P_6]^{6-}$ ($\doteq cyclo-S_6$)—as part of its Ti₂P₆ cubane-like skeleton. In contrast, cyclo-As₆ is a subunit in the cluster $[(LCo)_6As_{12}]$ (**58**), generated in the reaction of $[CoCl_2L_2]$ with "K₃As₇".^{26a} The unusual Co₆As₁₂ skeleton of **58** is built up of a Co₆As₆ icosahedron, in which the cobalt atoms are capped by cyclo-As₃ ligands to form two face-sharing Co₃As₃ octahedra. The remaining As₆ ring adopts the chair conformation.^{26a}

In addition to the mentioned complexes with cleaved "E₆" ligands ("E₆" = $2 \times E_3$, $3 \times E_2$), compound **59**, containing a "P₆" ligand (P₄/P₂), has been prepared as shown in eq 21.⁴³ The X-ray crystallographic data for **59** can best be interpreted in terms of two polyhedra (pentagonal MoFeP₄ pyramid and MoFeP₂ tetrahedrane) shar-

 $L = PEt_2Ph$

ing a common edge. The 54 cluster electrons are in accord with the electron-counting rules of Wade–Mingos.⁷

 E_7 and E_8 Ligands (E = P, As, Sb). The currently known molecular E_7 building blocks in coordination chemistry have the nortricyclane- and norbornadiene-like skeletons of types Q and R. Structure Q has been realized in the

complex $[P_7{Fe(CO)_2Cp}_3]$,^{26a} while complexes with the ligand **R** constitute by far the most intensively studied coordination mode.

Syntheses of the anionic complexes **60** (eq 22) by the groups of Eichhorn⁴⁵ and Tremel⁴⁶ opened up an intriguing chapter in the chemistry of Zintl ions⁴⁴ and provided a further bridge to solid-state chemistry.⁴Complexes **60**

react with R₄N⁺ salts (R = Me, Et, ^{*n*}Bu) in ethylenediamine solution to furnish [{ η^4 -RP₇}{W(CO)₃}]²⁻, in which R is bonded to the divalent P atom of **60**.⁴⁵ Many of these complexes exhibit fluxional behavior in solution.⁴⁵ The X-ray crystallographic data for the series [{ η^4 -E₇}-{M(CO)₃}]³⁻ (**60**) reveal the following features:^{45,46} (i) four

short E–E bonds ($2 \times \eta^2$ and $2 \times$ to the divalent E atom) as well as (ii) two nonbonding E····E separations for the trapezoidally arranged "E₂" subunits coordinated to M(CO)₃ (E = P, As, M = Cr;⁴⁵ E = Sb, M = Mo⁴⁶).

This class of compounds has also been studied by $\rm EH^{46}$ and Fenske–Hall MO calculations.⁴⁵

To date, neither cubic or square antiprismatic nor triangulated dodecahedral structures of E_8 have been stabilized coordinatively. However, the open-edge P_8 -cuneane structure—a structural motif of Hittorf's phosphorus—is found in complex **61**, prepared as shown in eq 23 starting from P_4 . The P–P bond lengths of the " P_2 " bridges in **64** are 2.24 Å (cf. ref 47b).^{47a}

Cluster **62**, formed together with $[{Cp'''Co}_2(P_2)_2]$ **(63)** and $[{Cp'''Co}_3(P_{12})]$ **(64)** according to eq 24,⁴² contains an unusual P₈ ligand composed of a P₅-P₃ framework.

X-ray crystallography of MNiP₈ (M = Mo, W) revealed a "cube" structure of the P₈ unit (formally $[P_8]^{6-}$) in which 3 (shown by broken lines) of the 12 edges have been cleaved.^{48a} Electronic band-structure calculations are indicative of a relevant covalent character in MoNiP₈.^{48b}

Two unique cyclo-As₈ ligands, forming parts of Nb clusters, have been prepared according to eqs 25 and 26.

While the cyclo-As₈ ligand in **65**⁴⁹ (eq 25) exists as a highly distorted eight-membered ring, which can formally be considered as the all-arsenic analogue of cyclooctatet-raene, the $\frac{1}{2}$ [Rb{NbAs₈}]²⁻ anion of **66**^{4,44} (eq 26) contains a crownlike [cyclo-As₈]⁸⁻ unit that is isoelectronic and isostructural with cyclo-S₈.

E_n **Ligands (E = P, As;** n > 8). In contrast to the polyphosphides,⁸ pnictogen-rich complexes with "naked" P_n and As_n ligands are relatively rare. The all-pnictogen analogue E₁₀ (E = P, As) of dihydrofulvalene (C₁₀H₁₀) exists in complex **67** as a P₅–P₅, 16e⁻ donor ligand with a P···P separation of 2.62 Å.⁵⁰

The P_{10} ligand in the paramagnetic complex [{CpCr-(CO)₂}₅ P_{10}] (**68**), presumably formed via a radical mechanism, can be regarded as a P_7 norbornane unit with a P_2 bridge and one terminal P atom.⁵¹

A number of interesting parallels can be drawn on comparing **62** (eq 24) and other P_n ligands with polycyclic phosphanes,⁹ polyphosphides,⁸ and the results of theoretical calculations.⁵²

The P_7-P_5 structure for the P_{12} ligand of **64** was deduced from extensive ³¹P NMR investigations.⁴² The

norbornadiene-like P_7 part of the P_{12} ligand (12e⁻ donor) corresponds to the P_7 skeleton of **60** (eq 22),^{45,46} while the P_5 part should be equivalent to those in the P_{10} complex **67**.⁵⁰ Formally, the P_{12} ligand can be considered as the cycloaddition product of P_{10} with $P_{2.}^{42}$

Further Links. Interesting agreements between theoretical calculations and experimental results were found for the complex (CuI)₃P₁₂ (**68**).⁵³ Its P₁₂ skeleton consists of the theoretically predicted⁵² ${}^{1}_{\infty}{[P_{10}]P_2[}^{\circ}$ phosphorus strands. Alternatively, the strands may be considered to consist of linked P₇ norbornane units.⁵³ Another example of impressive agreements between theory and experiment is (CuI)₂P₁₄ (**69**).⁵⁴ This novel, polymeric phosphorus allotrope with the translational unit [P₁₄^{±0}] consists of [P₁₂]

units linked by $[P_2]$ fragments 54 in harmony with the theoretically derived ${}^1_{\omega}\{[P_{10}]P_2[\}^\circ$ system. 52

The complex $[{L_2Ni}_4P_{14}]$ (70)^{26a} was prepared in a straightforward reaction according to eq 27. X-ray crystallographic data show that the P₁₄ ligand of 70 consists of two linked P₇ cages with norbornadiene-like structure.^{26a}

From the elegant works of Baudler,⁹ von Schnering,⁸ and Häser,⁵² it is known that five-membered phosphorus rings as well as P₇-norbornane-like (bicyclic P₅ rings) structures are important structural motifs (cf. Hittorf's phosphorus) in phosphorus chemistry. The remarkable parallels described above add a new dimension to this topic.

Theoretical Aspects. As a supplement to the earlier theoretical studies,⁴ an important recent result is that [cyclo-P₅]⁻ is almost as aromatic as its carbon analogue [C₅H₅]^{-.55} The results of laser photoelectron detachment measurements in $[P_n]^-$ (n = 1-9) and $[P_8]^{2-}$ were compared with those of density functional calculations under simulated annealing.⁵⁶ The most stable forms are the butterfly isomer for $[P_4]^-$, D_{5h} symmetry for $[P_5]^-$, and a cuneane-like structure for $[P_8]^-$. The $[P_8]^{2-}$ system is analogous to the planar, isoelectronic 10 π system [(CH)₈]^{2–}, while the situations in $[P_7]^-$ and $[P_9]^-$ are less clear.⁵⁶ Häser and Böcker have performed by far the most comprehensive ab initio calculations on covalent P_n structures, including red phosphorus.⁵² Their results have had and will continue to have an important and stimulating impact on investigations of complexes with "naked" P_n ligands. Density functional studies on As_n clusters (n = 2-11) produce structures analogous to those for the P_n isomers but expanded by about 9%.57

Concluding Remarks

The developments in the field of P_n and As_n ligands mentioned above have impressively demonstrated that the concept of the diagonal relationship between carbon and phosphorus is still capable of expansion and that many of these coordinatively stabilized, substituent-free P_n and As_n molecules serve as relevant bridges between main group, transition metal, or solid-state chemistry on one hand and organic or theoretical chemistry on the other. Further studies on the role of Cp^R ligands and the reactivity of the obtained products will certainly be rewarding. More information on mechanistic aspects is urgently required, and the potential scope of application for these new classes of complexes with "naked" P_n and As_n ligands is still unknown. The author thanks the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Graduiertenkolleg "Phosphorus Chemistry as a Link between Different Chemical Disciplines" for financial support and all co-workers for their skillful and diligent research work.

References

- Foust, A. S.; Foster, M. S.; Dahl, L. F. Organometallic Pnicogen Complexes. IV. Synthesis, Structure, and Bonding of New Organometallic Arsenic-Metal Atom Clusters Containing a Metal-Bridged Multiply Bonded As₂ Ligand: Co₂(CO)₆As₂ and Co₂{(CO)₅P-(C₆H₅)₃}As₂. J. Am. Chem. Soc. **1969**, *91*, 5633.
- (2) Ginsberg, A. P.; Lindsell, W. E.; McCullough, K. J.; Sprinkle, C. R.; Welch, A. J. Preparation and Properties of tetrahedro-tetraphosphorus Complexes of Rhodium and Iridium. Molecular and Electronic Structure of [RhCl(η²-P₄)(PPh₃)₂]. J. Am. Chem. Soc. **1986**, 108, 403.
- (3) Di Vaira, M.; Sacconi, L. Transition metal complexes with cyclo-triphosphorus (η³-P₃) and tetrahedro-Tetraphosphorus (η¹-P₄) ligands. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 330.
- (4) Reviews: Scherer, O. J. Complexes with Substituentfree Acyclic and Cyclic Phosphorus, Arsenic, Antimony, and Bismuth Ligands. *Angew. Chem., Int. Ed. Engl.* **1990**, *29*, 1104. Whitmire, K. H. Main Group-Transition Metal Cluster Compounds of the Group 15 Elements. *Adv. Organomet. Chem.* **1998**, *42*, 1.
- (5) Dillon, K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy, Wiley: New York, 1998.
- (6) Hoffmann, R. Building Bridges Between Inorganic and Organic Chemistry. Angew. Chem., Int. Ed. Engl. 1982, 21, 711.
- (7) Wade, K. Structural and Bonding Patterns in Cluster Chemistry. *Adv. Inorg. Chem. Radiochem.* 1976, *18*, 1. Mingos, D. M. P.; Wales, D. J. *Introduction to Cluster Chemistry*, Prentice-Hall: Englewood Cliffs, NJ, 1990; p 249.
- (8) von Schnering, H.-G.; Hönle, W. Bridging Chasms with Polyphosphides. *Chem. Rev.* **1988**, *88*, 243.
- (9) Baudler, M.; Glinka, K. Monocyclic and Polycyclic Phosphanes. *Chem. Rev.* **1993**, *93*, 1623.
- (10) Huttner, G.; Evertz, K. Phosphinidene Complexes and Their Higher Homologues. *Acc. Chem. Res.* **1986**, *19*, 406.
- (11) Strube, A.; Huttner, G.; Zsolnai, L. Linear Twofold Coordination of Arsenic in [Cp'(CO)₂Mn = As = Mn(CO)₂Cp']⁺. Angew. Chem., Int. Ed. Engl. **1988**, 27, 1529.
- (12) Fermin, M. C.; Ho, J.; Stephan, D. W. Sterically Induced P–C Bond Cleavage: Routes to Substituent-Free Phosphorus Complexes of Zirconium. *Organometallics* **1995**, *14*, 4247.
- (13) Johnson, M. J. A.; Lee, P. M.; Odom, A. L.; Davis, W. M.; Cummins, C. C. Atom-Bridged Intermediates in N- and P-Atom Transfer Reactions. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 87.
- (14) (a) Cummins, C. C. Reductive cleavage and related reactions leading to molybdenum-element multiple bonds: new pathways offered by three-coordinate molybdenum (III). *Chem. Commun.* **1998**, 1777. (b) Scheer, M. Metal element triple bonds of the heavier group 15 elements. *Coord. Chem. Rev.* **1997**, *163*, 271.
- (15) Ho, J.; Rousseau, R.; Stephan, D. W. Synthesis, Structure, and Bonding in Zirconocene Primary Phosphido (PHR⁻), Phosphinidene (PR²⁻), and Phosphide (P³⁻) Derivatives. *Organometallics* **1994**, *13*, 1918.

- (16) Matthews, H. E.; Feldman, P. A.; Bernath, P. F. Upper Limits to Interstellar PO. Astrophys. J. 1987, 312, 358.
- (17) (a) Scherer, O. J.; Braun, J.; Walther, P.; Heckmann, G.; Wolmershäuser, G. Phosphorus Monoxide (PO) as Complex Ligand. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 852. (b) Wang, W.; Carty, A. J. Phosphorus monoxide coordination chemistry. *New. J. Chem.* **1997**, *21*, 773.
- (18) (a) Scherer, O. J.; Vondung, C.; Wolmershäuser, G. PS Ligands as Building Blocks of Chiral Dimetallatetrahedranes with a Common Vertex. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1303. (b) Lorenz, I.-P.; Pohl, W.; Polborn, K. Triferriothioxophosphoranes: First Structural Characterization of a μ₃-P=S complex. *Chem. Ber.* **1996**, *129*, 11.
- (19) (a) Scherer, O. J.; Weigel, S.; Wolmershäuser, G. [Cp*FeP₅] as a Useful Source for the Synthesis of Cobalt Complexes with "naked" P_n Ligands. *Chem. Eur. J.* **1998**, *4*, 1910. (b) Weigel, S.; Wolmershäuser, G.; Scherer, O. J. [{Cp"Co}₃(μ₃-P)(μ₃-PSe)], ein Dreikerncluster mit einem PSe-Liganden. *Z. Anorg. Allg. Chem.* **1998**, *624*, 559. (c) Unpublished results.
- (20) (a) Herrmann, W. A.; Koumbouris, B.; Zahn, T.; Ziegler, M. L. Arsanediyl (Arsinidene) and Diarsene Complexes by Metal-Induced Degradation of Monoarsane. Angew. Chem., Int. Ed. Engl. 1984, 23, 812.
 (b) Huttner, G.; Sigwarth, B.; Scheidsteger, O.; Zsolnai, L.; Orama, O. Diarsenic, As₂, as a Four-, Six-, or Eight-Electron Donor Ligand. Organometallics 1985, 4, 326.
- (21) Scherer, O. J.; Ehses, M.; Wolmershäuser, G. Activation of P₄ and P₂ by Transition Metal Complexes at Room Temperature. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 507.
- (22) (a) Harper, J. R.; Rheingold, A. L. Synthesis and molecular structure of [η⁵-C₅H₅Mo(CO)₂]₂(μ,η²-Sb₂). *J. Organomet. Chem.* **1990**, *390*, C36. (b) Breunig, H. J.; Rösler, R.; Lork, E. Complexes with Sb₂ and cyclo-Sb₃ Ligands: The Tetrahedranes [{C₅H₅(CO)₂-Mo}₂Sb₂], [C₅H₅(CO)₂MoSb₃], and [C₅Me₅(CO)₂-MoSb₃]. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 2819.
- (23) (a) Davies, J. E.; Mays, M. J.; Raithby, P. R.; Shields, G. P.; Tompkin, P. K. Synthesis and characterisation of $[M_2(\eta^5-C_5H_5)_2(CO)_4(\mu-PH_2)(\mu-H)]$ (M = Mo, W); a new route to μ -PH₂ complexes involving novel activation of a bridging diphosphorus ligand. *Chem. Commun.* **1997**, 361. (b) Davies, J. E.; Kerr, L. C.; Mays, M. J.; Raithby, P. R.; Tompkin, P. K.; Woods, A. D. Reaction of Group 15 Trichlorides ECl₃ with the Anion $[Mo_2Cp_2(CO)_4(\mu-PH_2)]^-$: Synthesis and Characterization of the First Complexes Featuring a Hetero μ , η^2 -PE Ligand (E = As, Sb). *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 1428.
- (24) Scherer, O. J.; Kemény, G.; Wolmershäuser, G. $[Cp_4-Fe_4(E_2)_2]$ Clusters with Triangulated Dodecahedral Fe_4E_4 Skeletons (E = P, As). *Chem. Ber.* **1995**, *128*, 1145.
- (25) Scherer, O. J.; Pfeiffer, K.; Heckmann, G.; Wolmershäuser, G. [(C₅Me₄R)Co(As₂)]-Molekülbausteine. *J. Organomet. Chem.* **1992**, 425, 141.
- (26) (a) Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Zintl Anions as Starting Compounds for the Synthesis of Polynuclear Transition Metal Complexes. *Chem. Eur. J.* **1996**, *2*, 238. (b) Scherer, O. J.; Blath, C.; Heckmann, G.; Wolmershäuser, G. [{(C₅Me₄R)Ru}₃Ru(η³-As₃)-(μ₃,η³-As₃)(μ₃-As)₃], arsenreiche Vierkerncluster. *J. Organomet. Chem.* **1991**, *409*, C15. (c) Von Hänisch, C.; Fenske, D. [(Cp*Fe)₃{(η³-As₃)Fe}As₆] und [(Cp*Fe)₃-As₆][FeCl₃(THF)], zwei neue Eisen-Arsen-Cluster mit

As₆- und As₃-Fragmenten. *Z. Anorg. Allg. Chem.* **1998**, *624*, 367. (d) Fenske, D.; Persau, C. Synthesen und Kristallstrukturen von [Pd₉As₈(PPh₃)₈] und [Pd₉-Sb₆(PPh₃)₈]. *Z. Anorg. Allg. Chem.* **1991**, *593*, 61.

- (27) Von Hänisch, C.; Fenske, D.; Weigend, F.; Ahlrichs, R. A Square As₄ and a Prismatic As₆ Structure as Complex Ligands. *Chem. Eur. J.* **1997**, *3*, 1494.
- (28) Detzel, M.; Pfeiffer, K.; Scherer, O. J.; Wolmershäuser, G. Cage Extension to Clusters with Co₂/ Co₃MoAs₆ Polyhedron Frameworks. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 914.
- (29) (a) Di Vaira, M.; Stoppioni, P.; Midollini, S.; Laschi, F.; Zanello, P. H⁺ Addition to the Heteroatomic CoP₃ Cluster. Synthesis of the Radical CoP₃⁺ Cluster and Electrochemical Study. *Polyhedron* **1991**, *10*, 2123. (b) Di Vaira, M.; Rovai, D.; Stoppioni, P. Addition of RHg⁺ Fragments to P–P Bonds of Heteroatomic Clusters. *Polyhedron* **1990**, *9*, 2477.
- (30) (a) Herberhold, M.; Frohmader, G.; Milius, W. Neue Vanadium-Komplexe mit substituentenfreien Phosphorliganden. J. Organomet. Chem. 1996, 522, 185.
 (b) Scherer, O. J.; Mohr, T.; Wolmershäuser, G. Cleavage of an acyclic P₅ ligand into P₄/P₁ and P₃/P₂ building blocks. J. Organomet. Chem. 1997, 529, 379. Mohr, T. Thesis, Universität Kaiserslautern, 1996.
- (31) Scheer, M.; Schuster, K.; Krug, A.; Hartung, H. [Cr-(CO)₅PCl₃]–A Starting Material for Phosphorus-Rich P_x Ligand Complexes. *Chem. Ber./Recueil* **1997**, *130*, 1299.
- (32) (a) Barr, M. E.; Smith, S. K.; Spencer, B.; Dahl, L. F. Photochemical Synthesis and Stereophysical Characterization of W(CO)₄[cyclo-(PW(CO)₅)₄]: Experimental—Theoretical Bonding Analysis of its Unprecedented Pentametal-Coordinated cyclo-P₄ Ligand. *Organometallics* **1991**, *10*, 3983. (b) Scheer, M.; Herrmann, E.; Sieler, J.; Oehme, M. The cyclo tetraphospha ligand as a 12 electron donor. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 969.
- (33) Scheer, M.; Becker, U.; Chisholm, M. H.; Huffman, J. C.; Lemoigno, F.; Eisenstein, O. $[Cp''Co(P_4)-{(Cp''Co)_2(\mu-CO)}]$ (Cp'' = C₅H₃But₂): A Complex with a P₄ Unit on the Way to a P₁ and P₃ Ligand. *Inorg. Chem.* **1995**, *34*, 3117.
- (34) (a) Scherer, O. J.; Schwarz, G.; Wolmershäuser, G. Eisen-Zweikernkomplexe mit unterschiedlichen P₄-Liganden. *Z. Anorg. Allg. Chem.* **1996**, *622*, 951. (b) Scherer, O. J.; Hilt, T.; Wolmershäuser, G. P₄ Activation with [{Cp^{'''}(OC)₂Fe}₂] (Cp^{'''} = C₅H₂But₃-1,2,4): Exclusive Formation of the Exo/Exo-Butterfly Complex [{Cp^{'''}(OC)₂Fe}₂(μ - η ¹: η ¹-P₄]]. *Organometallics* **1998**, *17*, 4110. (c) Unpublished results.
- (35) Scherer, O. J.; Pfeiffer, K.; Wolmershäuser, G. Cobaltkomplexe mit As₄-Liganden. *Chem. Ber.* 1992, *125*, 2367.
- (36) Peruzzini, M.; Ramirez, J. A.; Vizza, F. Hydrogenation of white phosphorus to phosphane with rhodium und iridium trihydrides. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 2255.
- (37) (a) Scherer, O. J.; Brück, T.; Wolmershäuser, G. Pentaphosphaferrocene als Komplexliganden. *Chem. Ber.* **1989**, *122*, 2049. (b) Rink, B.; Scherer, O. J.; Wolmershäuser, G. Übertragung eines cyclo- E_5 – Liganden (E = P, As) von einem Eisen- auf ein Ruthenium- und ein Osmium-Zentrum. *Chem. Ber.* **1995**, *128*, 71. (c) Detzel, M.; Friedrich, G.; Scherer, O. J.; Wolmershäuser, G. $\eta^5:\eta^2$ Coordination of a cyclo- E_5 Ligand, E = P,As. *Angew. Chem., Int. Ed.*

Engl. **1995**, *34*, 1321. (d) Detzel, M.; Mohr, T.; Scherer, O. J.; Wolmershäuser, G. $[Cp^*Fe(\eta^5-P_5)]$, a Sandwich Complex with Diverse Ligand Properties. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1110.

- (38) Goh, L. Y.; Wong, R. C. S.; Yip. W.-H.; Mak, T. C. W. Synthesis and Thermolysis of Di- and Triarsenic Complexes of Chromium. Crystal Structure of [CpCr-(CO)₂]₂As₂. Organometallics **1991**, *10*, 875.
- (39) Hughes, A. K.; Murphy, V. J.; O'Hare, D. Synthesis, X-Ray Structure and Spin Crossover in the Tripledecker Complex $[(\eta^5-C_5Me_5)Cr(\mu^2:\eta^5-P_5)Cr(\eta^5-C_5Me_5)]^+[A^-]$ (A = PF₆, SbF₆). J. Chem. Soc., Chem. Commun. **1994**, 163.
- (40) Reddy, A. C.; Jemmis, E. D.; Scherer, O. J.; Winter, R.; Heckmann, G.; Wolmershäuser, G. Electronic Structure of Triple-Decker Sandwich Complexes with P₆ Middle Rings. Synthesis and X-ray Structure Determination of Bis(η^{5} -1,3-di-tert-butylcyclopentadienyl) (μ - η^{6} : η^{6} -hexaphosphorin)diniobium. *Organometallics* **1992**, *11*, 3894.
- (41) (a) Scherer, O. J.; Werner, B.; Heckmann, G.; Wolmershäuser, G. Bicyclic P₆ as Complex Ligand. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 553. (b) Scherer, O. J.; Schulze, J.; Wolmershäuser, G. Bicyclisches As₆ als Komplexligand. *J. Organomet. Chem.* **1994**, *484*, C5.
- (42) Scherer, O. J.; Berg, G.; Wolmershäuser, G. P₈ and P₁₂ as Complex Ligands. *Chem. Ber.* **1996**, *129*, 53.
- (43) Hofmann, C.; Scherer, O. J.; Wolmershäuser, G. [Cp*FeP₆MoCp*]: A dinuclear complex with a P₄ and a P₂ ligand. *J. Organomet. Chem.* **1998**, *559*, 219.
- (44) Chemistry, Structure, and Bonding of Zintl Phases and Ions; Kauzlarich, S. M., Ed.; Verlag Chemie: Weinheim, New York, 1996.
- (45) Charles, S.; Danis, J. A.; Fettinger, J. C.; Eichhorn, B. W. Rapid Inversion of Phosphorus in the $[\eta^{4}-(C_{6}H_{11})_{3}SnP_{7}W(CO)_{3}]^{2-}$ and $[(en)(CO)_{3} W(\eta^{1}, \eta^{4}-P_{7}) M(CO)_{3}]^{3-}$ Ions where M = Cr, W. *Inorg. Chem.* **1997**, *36*, 3772 and references therein.
- (46) Bolle, U.; Tremel, W. Insertion of a Transition Metal Fragment into a Heptaantimonide (3–) Anion: Synthesis and Structure of [Sb₇Mo(CO)₃]^{3–}. J. Chem. Soc., Chem. Commun. **1994**, 217.
- (47) (a) Barr, M. E.; Adams, B. R.; Weller, R. R.; Dahl, L. F. Synthesis and Structural Bonding Analysis of $(\eta^5 C_5H_4Me)_4Fe_4(CO)_6P_8$ and $(\eta^5 C_5H_4Me)_4Fe_6(CO)_{13}P_8$: Two Unprecedented Transition-Metal Complexes Containing the Cage-like Subunit of Hittorf's Monoclinic Phosphorus Allotrope. *J. Am. Chem. Soc.* **1991**,

113, 3052. (b) Scheer, M.; Becker, U.; Matern, E. Ir-Komplexe mit P_4 -Bicyclotetraphosphan und P_8 -Cunean als Liganden-CO-Insertion in eine Ir-P-Bindung. *Chem. Ber.* **1996**, *129*, 721.

- (48) (a) Dewalsky, M. V.; Jeitschko, W. Preparation, Physical Properties and Crystal Structure of MoNiP₈ und WNiP₈. *Acta Chem. Scand.* **1991**, *45*, 828. (b) Llunell, M.; Alvarez, S.; Alemany, P.; Hoffmann, R. Electronic Structure, Bonding, and Electrical Properties of MoNiP₈. *Inorg. Chem.* **1996**, *35*, 4683.
- (49) Scherer, O. J.; Winter, R.; Heckmann, G.; Wolmershäuser, G. Cyclo-As₈ as Complex Ligand. Angew. Chem., Int. Ed. Engl. **1991**, 30, 850.
- (50) Scherer, O. J.; Höbel, B.; Wolmershäuser, G. Double Open-Edged P₁₀ Dihydrofulvalene as a 16-Electron Donor Ligand. *Angew. Chem., Int. Ed. Engl.* **1992**, *31*, 1027.
- (51) Goh, L. Y.; Wong, R. C. S.; Sinn, E. Novel Polycyclic Phosphane-to-Metal Coordination. Reaction of [CpCr(CO)₃]₂ with Elemental Phosphorus and Structure and Paramagnetism of the Odd-Electron Complex [CpCr(CO)₂]₅P₁₀. Organometallics **1993**, *12*, 888.
- (52) Böcker, S.; Häser, M. Covalent Structures of Phosphorus: A Comprehensive Theoretical Study. *Z. Anorg. Allg. Chem.* **1995**, *621*, 258 and references therein.
- (53) Pfitzner, A.; Freudenthaler, E. (CuI)₃P₁₂: A Solid Containing a New Polymer of Phosphorus Predicted by Theory. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1647.
- (54) Pfitzner, A.; Freudenthaler, E. (Cul)₂P₁₄: ein neues Phosphorpolymer in einer Kupferhalogenid-Matrix. *Z. Naturforsch.* **1997**, *52b*, 199.
- (55) Dransfeld, A.; Nyulászi, L.; Schleyer, P. v. R. The Aromaticity of Polyphosphaphospholes Decreases with the Pyramidality of the Tricoordinate Phosphorus. *Inorg. Chem.* **1998**, *37*, 4413.
- (56) Jones, R. O.; Ganteför, G.; Hunsicker, S.; Pieperhoff, P. Structure and spectroscopy of phosphorus cluster anions: Theory (simulated annealing) and experiment (photoelectron detachment). *J. Chem. Phys.* **1995**, *103*, 9549.
- (57) Ballone, P.; Jones, R. O. Density functional study of phosphorus and arsenic clusters using local and nonlocal energy functionals. *J. Chem. Phys.* **1994**, *100*, 4941.

AR970317C